Gina Chaput
EARTH'S ORGANISMS
microbial ecology motility bacteria fungi chemotaxis
Hit the Road Jack
Fig 1 How does it feel to move like bacteria? (pixabay.com)
Inspiration for this post was the classic Ray Charles’ “Hit the Road Jack.” To me, this song just makes you want to groove, whether snapping your fingers or maybe trying out the fly.
So, before you start reading, put on the tune and give it a shot! As the melody takes over, notice the ease of your movement. Glide across the room and appreciate how quickly you travel the floor. Now I want you to picture yourself in pool trying to do the same dance in water. The ease of movement lessens, right? Finally, what about dancing in a pool of honey? Well, at this point you’d be lucky to tap your foot quickly… Welcome to the life of a bacterial cell trying to move.
I make this comparison based on Reynold’s Number, which is the ratio of the liquid’s inertial force (the liquid’s resistance to an object moving) to the liquid’s viscous force (the friction between the liquid and the object). It can be calculated as:
Reynold’s number = (liquid density) x (size of object) x (speed object)(viscosity of liquid)
To give some perspective using the imagery we’ve been working with: if you are swimming in water, the Reynolds Number is 1000. If you are swimming in honey, the Reynolds number is 0.001. As for that bacterial cell trying to swim in water? Well, that Reynolds number can be as low as 0.00001[1]. Looking back at the equation, we can attribute this to the small size and speed of bacteria. So, even though we don’t experience swimming in water as being as viscous as honey, bacteria definitely do!
A bacterial cell’s ability to move from place to place relies heavily on whether or not there is enough moisture surrounding it. In soils, this can be difficult to achieve. So how do bacteria travel around in the environment? There are many ways, but for today we are going to focus on one very neat method bacteria have evolved to travel in dry soil: fungal highways.
Figure 2 Fungal hyphae. www.distanthillgardemn.org
This kind of highway makes LA’s set up look like a drive in a local park. A fungal network can take up 20,000 km per cubic meter of soil [2], making it very dense and very vast. Fungal spreading is also not limited by how much water is in the soil. Therefore, picture them like bridges between patches of moist and dry spots along the forest floor. Finally, the branch-like extensions of fungi, known as hyphae, have liquid films surrounding them, making just enough moisture for their bacterial neighbors to hitch a ride.
Okay, that’s great that bacteria can hop on board the crazy fungal train, but why would bacteria want to live in the fast lane in the first place? Well, I’ll paint the picture this way: When you heard the ice cream truck around the corner as a kid, did you sit on the curb and hope that you happened to be on its route, or did you make a 200 yard dash towards the sounds of sweetness? My guess is you did the latter. Resources in soil don’t evenly spread to all the bacteria –even when it rains. They usually end up in patches [3]. If you are a cell, you want to get to the food to grow and thrive – but you aren’t the only one! Fungi spread to do the same thing – find food and keep growing. So why not use this to your advantage as a bacterial cell? Take a ride along the liquid film and plop yourself in a feast.
Finally, I mentioned that the fungal highways are vast and complicated – how do bacteria know which way to go to get to the resources they need? This involves chemotaxis – which is the movement of an organism towards a chemical signal. Think of it like you running towards the sound of the ice cream truck. You don’t see the ice cream yet, but the louder song, the closer you know you are. For bacteria, there are chemoattractants (chemical signals) that the bacteria can detect for all manner of nutrients [4]. As it gets closer to the source, the level of the chemoattractants become more concentrated along the liquid films of the fungal hyphae [5].
What is the take home of all this? Well other than the fact I hope you actually did do the fly in your living room listening to “Hit the Road Jack”, researchers have looked at this relationship between bacteria and their fungal speedways and asked: how can we use this knowledge to potentially solve problems such as soil pollution [3]? Bacteria have quite the extensive palate, meaning some can eat contaminants that would otherwise persist in the soil for years and hurting our environment. For example, if certain fungus and bacteria combinations degradate aromatic compounds, could they be implemented as bioremediation of a an oil spill? Take a second and think about it. What other ways could fungal highways be useful to us? Leave comments and ideas – they could be the next inspiration for a scientist!
References:
[1] Cohen, Netta, and Jordan H. Boyle. “Swimming at low Reynolds number: a beginners guide to undulatory locomotion.” Contemporary Physics 51, no. 2 (2010): 103-123.
[2] Venieraki, A., P. Ch Tsalgatidou, D. G. Georgakopoulos, M. Dimou, and P. Katinakis. “Swarming motility in plant-associated bacteria.” Hellenic Plant Protection Journal 9, no. 1 (2016): 16-27.
[3] Banitz, Thomas, Karin Johst, Lukas Y. Wick, Susan Schamfuß, Hauke Harms, and Karin Frank. “Highways versus pipelines: contributions of two fungal transport mechanisms to efficient bioremediation.” Environmental microbiology reports 5, no. 2 (2013): 211-218.
[4] Mitchell, James G., and Kazuhiro Kogure. “Bacterial motility: links to the environment and a driving force for microbial physics.” FEMS microbiology ecology 55, no. 1 (2006): 3-16.
[5] Furuno, Shoko, Katrin Päzolt, Cornelia Rabe, Thomas R. Neu, Hauke Harms, and Lukas Y. Wick. “Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon‐degrading bacteria in water‐unsaturated systems.”Environmental microbiology 12, no. 6 (2010): 1391-1398.
More From Thats Life [Science]
- Freshwater Mussels are Declining: Why Should You Care, and What Can You Do?
- The Story of Chestnuts in North America: How a Forest Giant Disappeared from American Forests and Culture
- Friendships, Betrayals, and Reputations in the Animal Kingdom
- Why Don't Apes Have Tails?
- Giant Bacteria, Giant Genomes
- 'Til the Yeasts Come Home? - Domesticating Microbes
- Built Different
- COVID-19 Stinks!
- How do microbes help animals adapt?
- What's the world's largest virus?
- How Monkeys and Apes Fight Climate Change by Eating Fruit
- Sound the Alarm! One Unique Way Primates Avoid Being Eaten
- The Drama of Barotrauma: Blobfish, Rockfish, and More
- Why are some primate infants brightly colored?
- Technological Advancements…. Thanks to Ferrets?
- Are palm trees really trees?
- The Eastern Spotted Newt: A Wandering Teenage Identity Crisis
- Survival by Aposematism and Mimicry: The Evolution of Bright Color Patterns
- Sifak-huh?
- You are a fish
- Things That Glow Pink in the Night: Why do some animals have fluorescent coloration under ultraviolet light?
- When You Call a Fish a Frog
- Who’s Got the Biggest Genome of Them All?
- The Biology of Booze ft. Tequila
- Dying Tomatoes, Healthy Kittens, and the EMP500: Why you should care about the International Society for Microbial Ecology
- The Purebred Poodle Problem
- Let It Glow
- I’m Likin’ That Lichen
- Celebrate the Holidays with a Decorative Parasite
- Sleeping One Hemisphere at a Time
- Through the Mycologist's Hand Lens: Deceptive Decomposers
- Life Science in Outer Space!
- 5 Things You Didn’t Know About Rats
- Watermelon Snow
- Critter Candid Cam
- Three Cool Plants in Hot Places
- A parasite only a moth could love
- Telling tales of plants and their names
- The Colorful World of Primate Hair
- Where do fish go in winter?
- You Scratch My Back and I’ll Scratch Yours
- Alien Microbes: How studying hyperthermophiles can help us discover life on other planets
- Life, the universe, and everything: Dreams of being a biophysicist
- Bug Sleuth – One Entomologist’s Mission to ID a Mysterious Swarm of Wasps
- Horny and Hungry: The Dilemma of Sexual Cannibalism
- Who’s who? The elusive difference between butterflies and moths
- Tuberculosis - A Romantic Disease?
- Ode to a Few Arachnids
- Monotropa uniflora - This wildflower is pretty wild
- Eavesdropping in the Animal Kingdom: Sneaky Creatures Just Trying to Get Ahead
- Trypanosomes - A Weird Pathogen You Haven't Heard Of
- A Beautiful 9/11 Tribute, but a Fiasco for Migratory Birds
- Cats can have AIDS, too.
- Part 2: Does catching Pidgeys help you notice Pigeons? Interviews with Pokémon Go Researchers
- Biodiversity in my Backyard: Encounters with Pidgeys and Dratinis, Part 1
- Fins, Limbs, Rays, and Digits – A Beginner’s Guide to Terrestrial Living
- Fins, Limbs, Rays, and Digits – A Beginner's Guide to Terrestrial Living
- Five things that really stink about the Brown Marmorated Stink Bug
- Tricks but no Treats - An Orchid’s Guide to Making a Fool of Your Pollinator
- Tracking the lost years - where do baby sea turtles grow?
- Posing as a Bird Mama: the adventures of a researcher-turned-bird-parent
- Hot moves and sexy sons · When Boys Become Men By Dancing
- The hungry caterpillar in real life
- Mantis Shrimp Vision - Seeing in Secret Code
- When It Comes to Bird Beaks - Size Matters
- Is your gut trying to kill your resolve? · Mind over microbe
- Recent talk of walls in the media has brought up a lot of emotions, but what do walls do in nature? · When a Wall is just a Wall
- Bees are more than buzzing insects around you · May the Bees Be With You: Maintaining the Sweet Balance in Life
- Neither a toad nor a worm · Nematodes: The super microscopic animal!
- Snap! Flash! Bang! Find out how ocean-dwelling pistol shrimp fire bubble ‘bullets’ to stun their unsuspecting prey. · How Pistol Shrimp Kill with Bubbles
- Who needs males after all?
- Ecology and Behavior of Woodchucks · Opposition Research on My Garden’s Greatest Nemesis
- Vision in Jumping Spiders · Watching Your Every Move
- Slimed and Consumed - The Blob is Real!
- The Evolution and Ecological Impacts of Cats · Lion in Sheep's Clothing
- What happens when frogs have to compete for acoustic space and a chance to be heard? · Struggling to be Heard - Competition in a Complex Soundscape
- Think Genghis Khan and Napoleon were the most successful invaders? Think again. · Invasive Species and Invasion: Part 1
- When, and how, terror birds invade
- 8 Reasons Plants Are Amazing
- Too Clean for Comfort · How our obsession with cleanliness might be hurting our health
- Stop, evaluate, and listen - serotonin surges when a female is present
- No Teeth, Long Tongue, No Problem - Adaptations for Ant-eating
- The Good, the Bad, and the Ugly - Predators, Parasitoids, and Parasites
- How our microbiome affects our health and vice versa · If you don't care for your microbiome, you might want to start
- Finding new ways to grow bacteria to progress science · Culturing the Least Cultured Members of Society
- Hit the Road Jack
- What Happened to Your Nose?
- Building better plants - Norman Borlaug and the Green Revolution
- Love Songs for Nobody - Birdsong in Winter
- We know we get infections from time to time. Why does this happen? · The Evolution of Virulence
- How cheese rinds may be a valuable tool for microbial discovery · The Unseen World – On Cheese?
- Find Me Where the Wild Things Are
- A commentary on how to make science more ‘clickable’ · You won’t believe this simple trick to tell if your coral is healthy or not
- Some species hide in plain sight, but scientists have ways to suss them out · Cryptic Species Hide in Plain Sight
- Minuscule Hitchhikers Pinch a Ride · Creature Feature - Pseudoscorpions
- World Fish Migration Day 2016!
- Walking With Giant Anteaters
- Why we should care about sea turtles · When A Sea Turtle Balanced Earth
- More ›